# How Does A Kite Fly?

## A Tale Of Four Forces

How does a kite fly, you might ask. Here is a simple summary of all the reasons your single-line kite flies at the height it does. The reasons for any other behavior, such as looping, are not covered here.

The MBK Simple Delta - simple to make and fly

This page starts out a bit like a high-school science lesson. However, it soon moves on to some interesting real-world situations which also relate to the question 'how does a kite fly'.

This colorful Rainbow Delta kite has good reviews and flies well in light to moderate winds. It comes with its own flying line.

## The Four Forces

The overall effect of air flowing past a tethered kite can be thought of as a single 'wind force' which has a direction and a strength. This force acts through a point somewhat forward of the center of the kite's shape, called the Center of Pressure.

However, when analyzing the flight of wings, including kite sails, it is usual to consider the 'wind force' as the sum of 2 separate forces, Lift (1) and Drag (2). Lift points vertically upwards, while Drag points horizontally downwind.

Let's assume for a moment that the flying line is infinitely thin, so it has no wind resistance. Also, let's assume it is weightless. Still, it experiences Tension (3) due to the Lift and Drag trying to pull the kite away from where it is tethered. The tension acts through the Towing Point of the kite, which is in a slightly different position to the Center of Pressure.

Finally, the kite weighs something of course, so it's Weight (4) is also a force. The weight acts vertically downwards, through the Center of Gravity, or balance point of the kite.

Ignoring the fact that these forces don't all act through exactly the same point on the vertical spar of the kite, they do all reach an equilibrium or balance when the kite rises to its maximum height. At this maximum height, the Lift and Drag forces exactly balance out the Tension and Weight forces. With no resulting force on the kite, it moves neither up nor down. Until something else changes of course, like the wind speed or the line length.

## How Does A Kite Fly...On Various Lines?

In the real world, flying lines aren't infinitely thin. Hence, the air resistance of the line does play a part in the kite's flight. The longer the line, the more air resistance it has, therefore the lower the flight of the kite.

Just imagine holding a long, light ruler, extending vertically up from your fingers. It's pretty clear the wind will simply try to blow it down. You'd feel the twisting force in your fingers.

Secondly, flying lines aren't weightless. That's pretty obvious when you have a kite up there on a long length of line! See the great bow in the line. That's largely due to the weight of the line, making it hang down like a chain between 2 posts.

Air resistance also plays a part in bowing the line. For a given length of line, the more bow, the less height the kite can achieve.

Most of my 1-Skewer kites have a lot of bow in the 20 pound Dacron line by the time I let all 50 meters (200 feet) out!

## How Does A Kite Fly...In Various Winds?

You have probably noticed that your kite doesn't always fly at the same height, even when flown on exactly the same length of line. This is because every kite has it's own optimal wind strength.

If the wind is weaker than this optimal wind strength, then the weight of the kite is a bigger factor in the overall balance of those 4 forces, and the result is a lower line angle. To put it another way, the Lift force is still greater than the Weight force, but not by as much, so the kite cannot rise as high.

I've had some delightful kite flights where the kite barely hangs in the air, flying in well below its optimum wind speed! This often happens near sunset.

If the wind is stronger than the optimum wind strength, then the Drag force is the factor which forces the line angle back down. Lift increases too, but not as much as the Drag!

I remember a great illustration of this on a windy day at a kite festival. A huge stack of Taiwanese traditional kites was still airborne, but blown down to less than a 45 degree angle by the strength of the wind. Normally, these stacks reach much higher line angles.

More recently, at the Royal Adelaide Show 2010, a giant orange Octopus kite was aloft in a very stiff breeze. The wind was so strong that the kite was blown down to only a 30 degree line angle at times!

There's another implication of the weight of the flying line. How does a kite fly much higher when there are hundreds of meters of line hanging below it... If you continue to let out line, there comes a point where it weighs so much that the kite cannot lift it any higher. Not even at the optimum wind strength. The only way to make the kite fly higher, all other things being equal, is to use a lighter line!

With my own MBK kites, this effect is only seen with the tiny 1-Skewer kites. Those 2-Skewer and Dowel kites pop right up to the 100 meter (330 feet) legal limit, as it is here in Australia. The only thing preventing them going even higher is my law-abiding nature... :-)

## How Does A Kite Fly...In Different Weather?

Now we come to 2 factors that have nothing to do with the kite itself...

Thermals are regions of rising air, which form due to temperature differences on the ground. A giant bubble of air which is just slightly warmer than the surrounding air is less dense. Therefore, it has a tendency to rise. It won't rise indefinitely, but a more complete discussion of thermals is beyond the scope of this page ;-)

Anyway, my kites find themselves in thermals all the time. To varying degrees, these patches of rising air occur all year round and in all sorts of weather. Sometimes, for example in warm weather, thermals can be large and strong. In this case, the effect is very obvious. Just about any kite will fly a lot higher than usual if it finds itself in rising air. Eventually, the rising air is replaced with horizontally flowing air or even sinking air. You can guess what happens then!

Just the other day I had a light-wind Sled kite on 120 meters of line, tugging strongly away - directly overhead! This effect causes many onlookers to wonder 'how does a kite fly directly overhead?' when there seems to be hardly any wind at all!

Wind gradients always exist when a wind blows across a landscape. This just means that the moving air is slowed down somewhat, the closer it is to the ground. There might be an average 2 knots wind-speed on your face. 50 feet up, it might be 3 knots. Up around 200 feet, it might be more like 6 knots.

Wind gradients are great when it appears there is not enough wind to fly. Quite often, there is enough wind to fly. You just have to tow the kite up high enough to find it! This works particularly well with light-wind kites.

Of course, it goes the other way too. Sometimes your kite takes off OK, but when you let it get really high, the wind becomes so strong that the kite cannot cope and starts to loop around in protest!

How does a kite fly? A flying kite can look so simple, but the answer to the question tends to get more complex the more you look into it.

There's one of our home-made Deltas in flight, in the video below...

Try this big Rainbow Delta kite to do some practical observations of all the things this page has talked about.

### E-book special of the month (25% off)...

This printable e-book takes you step-by-step through making a 120cm (4 ft) diameter Parasail kite. This kite performs well in gentle to moderate wind speeds. That's from 12 to 28 kph or from 8 to 18 mph. It pulls hard for it's size, so should not be flown by very small kids!

Every kite design in the MBK Soft Series satisfies the following points...

• Materials are plastic sheet, tape and line – and nothing more!
• Tools are a ruler, scissors and a marker pen - and nothing more!
• All cuts are along straight lines.

For the greatest chance of success, I make recommendations regarding the materials. For example, the type/weight of plastic, type/width of tape and line type/strength. Close enough should nearly always be good enough, since the design is well-tested and should be tolerant of small differences from my original.

Get the e-book for making the MBK Parasail kite. After making your first one in plastic and seeing how it performs, you can try soft Tyvek or rip-stop nylon for your next build.

The e-book is a PDF file - which means printable instructions to refer to while you make the kite. It also means convenient off-line access if that suits you better.

## What's New!

1. ### Flight Report:MBK Octopus #2 Floats

Apr 27, 17 02:40 AM

I'm still getting used to how far forward the towing point has to be on 'fat' kites...

First, it was the MBK Parafoil - the towing point needed to be level with the leading edge. Now, with the Octopus…

Plenty of fun kite info, photos and videos - there's definitely too much here for only one visit! Feel free to leave your impressions of this site or just this page, below...

### E-books

This one's FREE

More E-books...

Testimonials
(unedited)

"Love the easy to understand step by step instructions, made from next to nothing materials and above all so much fun to fly... cheers Tim for sharing your well thought out pdf kite designs with the whole world.

Very satisfying making your own and watching them get air-born for the first time."

_________________

"I've just bought your super e-book and spent most of last night pouring through all the great stuff in it!

Very detailed and USEFUL information - thanks for such a great book."

_________________

"30+ years ago, I tried making a kite using the 'instructions' in a free kite-safety booklet. What a disappointment for a young boy.

Your instructions and methods are wonderful. You help the builder to focus on accuracy, without making it hard. Also, you use materials that are durable, yet cheap!"

_________________

"omg i made a kite from this site and i fly it ....... booom i didnt expect this bc in the other sites instuction are trash

thank you"

This one's FREE

More E-books...

Wind Speeds

Light air
1-5 km/h
1-3 mph
1-3 knots
Beaufort 1

Light breeze
6–11 km/h
4–7 mph
4–6 knots
Beaufort 2

Gentle breeze
12–19 km/h
8–12 mph
7–10 knots
Beaufort 3

Moderate breeze
20–28 km/h
13–18 mph
11–16 knots
Beaufort 4

Fresh breeze
29–38 km/h
19–24 mph
17–21 knots
Beaufort 5

Strong breeze
39–49 km/h
25–31 mph
22–27 knots
Beaufort 6

High Wind
50-61 km/h
32-38 mph
28-33 knots
Beaufort 7